Low rank perturbations of large elliptic random matrices ∗ Sean O ’ Rourke

نویسندگان

  • Sean O’Rourke
  • David Renfrew
چکیده

We study the asymptotic behavior of outliers in the spectrum of bounded rank perturbations of large random matrices. In particular, we consider perturbations of elliptic random matrices which generalize both Wigner random matrices and non-Hermitian random matrices with iid entries. As a consequence, we recover the results of Capitaine, Donati-Martin, and Féral for perturbed Wigner matrices as well as the results of Tao for perturbed random matrices with iid entries. Along the way, we prove a number of interesting results concerning elliptic random matrices whose entries have finite fourth moment; these results include a bound on the least singular value and the asymptotic behavior of the spectral radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The singular values and vectors of low rank perturbations of large rectangular random matrices

In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-ra...

متن کامل

The derivative of SO(2N + 1) characteristic polynomials and rank 3 elliptic curves

Here we calculate the value distribution of the first derivative of characteristic polynomials of matrices from SO(2N + 1) at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. The connection between the values of random matrix characteristic polynomials and values of the L-functions of families of elliptic curves implies that this calculation in random mat...

متن کامل

Low Rank Approximation using Error Correcting Coding Matrices

Low-rank matrix approximation is an integral component of tools such as principal component analysis (PCA), as well as is an important instrument used in applications like web search, text mining and computer vision, e.g., face recognition. Recently, randomized algorithms were proposed to effectively construct low rank approximations of large matrices. In this paper, we show how matrices from e...

متن کامل

Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs

We investigate the convergence rate of approximations by finite sums of rank-1 tensors of solutions of multi-parametric elliptic PDEs. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for example, on the M -term truncated Karhunen-Loève expansion. Our approach could be regarded as either a class of compressed approxima...

متن کامل

Perturbations of Jordan matrices

We consider perturbations of a large Jordan matrix, either random and small in norm or of small rank. In both cases we show that most of the eigenvalues of the perturbed matrix are very close to a circle with centre at the origin. In the case of random perturbations we obtain an estimate of the number of eigenvalues that are well inside the circle in a certain asymptotic regime. In the case of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014